[[Integral domain]] # Condition for a quotient commutative ring to be an integral domain Let $R$ be a [[commutative ring]] and $I \triangleleft R$ be a proper, nontrivial (two-sided) [[ideal]]. Then the [[quotient ring]] $R / I$ is an [[integral domain]] iff $I$ is a [[prime ideal]]. #m/thm/ring > [!check]- Proof > Assume $R / I$ is an integral domain and let $ab \in I$. > Then $(a + I)(b+I) = ab+I = I \equiv 0$, > so either $a + I = I \equiv 0$ or $b + I = I \equiv 0$. > > For the converse, assume $I \trianglelefteq R$ is prime. > Since $R / I$ is automatically a commutative ring, > it only remains to show that $R / I$ has no [[Zero-divisor|zero-divisors]]. > To this end, assume $(a + I)(b + I) = I \equiv 0$. > Then $ab \in I$ and hence $a \in I$ or $b \in I$, > whence $a + I = I \equiv 0$ or $b+I = I \equiv 0$. <span class="QED"/> # --- #state/tidy | #lang/en | #SemBr